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Abstract - Adaptation of agriculture to climate change 

(CC) is a main goal within the European Union (EU). 

Therefore, it is crucial to assess the effectiveness of 

specific farm-level measures. This paper explores the 

CC adaptation of Austrian farms in arable regions, 

taking advantage of detailed information on soil 

conservation practice adoption. By employing an 

endogenous switching regression model (ESRM) for 

panel data we investigate the farm-level 

implementation of CC adaptation and its economic 

effect. Preliminary regression results suggest a 

significant effect of climatic conditions on the adoption 

of soil conservation.1 

 

INTRODUCTION 

Agriculture is going to be strongly influenced by 

increasing temperature and shifts in precipitation 

patterns, making it one of the most vulnerable 

economic sectors to CC in Europe. Consequently, the 

EU underlines the importance of mitigating its 

impacts. A key strategy to enhance the CC resilience 

of agriculture is farm-level implementation of specific 

CC adaptation measures. One example constitutes 

soil conservation (e.g. cover crops or reduced tillage), 

which aims to increase the moisture retention and 

subsequently yield (stability). This research 

investigates whether such farm-level CC adaptation 

decision is indeed economically effective for farms in 

Austrian arable regions – e.g. allowing them to better 

adapt to long-term and short-term (e.g. weather 

extremes) changes associated with CC.  

 

METHODOLOGY 

Implementing farm-level CC adaptation is voluntary, 

which means that adopters may systematically differ 

from non-adopters and cannot be seen as a random 

sample of the farm population. Unobservable 

characteristics of farms may affect both the CC 

adaptation decision and agricultural outcomes (Di 

Falco et al, 2011). A naive comparison of the two 

groups will thus most likely bias the effect of CC 

adaptation. To deal with this issue, Murtazashvili and 

Wooldridge (2016) developed an ESRM for panel 

data. The two-step model combines the Mundlak-

Chamberlain approach to heterogeneity with the 

control function approach, which we follow hereafter. 

Firstly, we model the selection variable using a 

correlated random effect (CRE) Probit model. The 

selection variable indicates the adoption of CC 

adaptation, which in our case consists of cover crops 

and low-impact tillage (i.e. soil conservation). We 

assume that the decision to adapt is represented by a 

dichotomous choice model, where the implementation 

depends on the expected utility of CC adaptation: 

𝑃𝑟(𝐴𝑑𝑎𝑝𝑡𝑖𝑡 = 1|𝑧𝑖𝑡)
=  𝑧𝑖𝑡𝝌 + 𝑧𝑖𝛒 + 𝛅𝟏𝛼

+ 𝛅𝟐𝜐 + 𝜀𝑖𝑡, 
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where  𝑧𝑖𝑡 denotes meteorological conditions (e.g. 

climate) as well as farm characteristics. These 

variables are later introduced in the outcome equation 

too, which is why two-step models have been 

criticized for potential misspecification due to multi-

collinearity. In line with previous studies (Di Falco et 

al., 2011), we account for this by adding a set of 

selection instruments solely to the selection equation, 

affecting the decision to employ CC adaptation but not 

the outcome. Further, the Mundlak (1978) device (𝑧𝑖) 

is included, which represents the mean of each time-

varying exogenous variable. This is done to control for 

unobservable characteristics and aims to substitute 

fixed-effects in nonlinear models. Finally, 𝛼 and 𝜐 

denote a time-trend and dummies for regions, 

respectively. In the second step, we estimate the 

relationship between the agricultural outcome and the 

control variables from the selection equation using an 

OLS estimator. We follow Murtazashvili and 

Wooldridge (2016) by including the generalized 

residuals from the Probit model to this outcome 

equation, in order to account for the endogeneity of 

the selection variable: 

𝑦𝑖𝑡 = 𝛽00 + 𝑥𝑖𝑡𝛽01 + 𝛾10𝐴𝑑𝑎𝑝𝑡𝑖𝑡 + 𝑥𝑖𝑡 ∗
𝐴𝑑𝑎𝑝𝑡𝑖𝑡𝛾11 +            𝑧𝑖𝛒𝟎 + 𝑧𝑖 ∗ 𝐴𝑑𝑎𝑝𝑡𝑖𝑡𝛒𝟏 +

𝛏𝟎ℎ𝑖𝑡̂ + 𝛏𝟏ℎ𝑖𝑡̂ ∗ 𝐴𝑑𝑎𝑝𝑡𝑖𝑡 +            𝛅𝟏𝛼 + 𝛅𝟐𝜐 +
𝜀𝑖𝑡 ,  
𝐸(𝜀𝑖𝑡|𝐴𝑑𝑎𝑝𝑡𝑖𝑡 , 𝑧𝑖𝑡) = 0, 

where 𝑦𝑖𝑡 is the net revenue per hectare of farm 𝑖 in 

year 𝑡 and 𝑥𝑖𝑡 represents a vector of all 

meteorological and farm variables. Further, 𝑥𝑖𝑡 is 

interacted with the selection variable 𝐴𝑑𝑎𝑝𝑡𝑖𝑡, where 

 γ11 denotes the difference between the coefficients 

of 𝑥𝑖𝑡 (i.e. 𝛽11 − 𝛽01) in the two regimes (Auci et 

al., 2021). In addition, the Mundlak device (𝑧𝑖) and 

the generalized residuals (ℎ𝑖𝑡̂) from the Probit model 

as well as their interaction with the selection variable 

are included. Using the coefficients of Equation (2), it 

is possible to denote the treatment effect on the 

treated (TT) farms (Heckman and 2001). Therefore, 

the difference between the expected net revenues for 

those farms that actually implemented the CC 

adaptation measure and the counterfactual outcome 

if farms with CC adaptation had decided not to adopt 

is: 

𝑇𝑇 = 𝐸 (𝑦𝑖𝑡
(1)

|𝐴𝑑𝑎𝑝𝑡𝑖𝑡 = 1)

− 𝐸 (𝑦𝑖𝑡
(0)

|𝐴𝑑𝑎𝑝𝑡𝑖𝑡 = 1) 

    = 𝑥𝑖𝑡(𝛽11 − 𝛽01) + 𝑧𝑖(𝜌1 − 𝜌0)

+ ℎ𝑖𝑡̂(𝜉1 − 𝜉0). 

(3) 

This represents the effect of CC adaptation (i.e. soil 

conservation) on the net revenues of adapted farms. 

DATA 

Our calculations are based on an unbalanced panel of 

individual farms in Austrian arable regions between 

2003 and 2016. Data on soil conservation practices is 

(2) 
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obtained from the Integrated Administration and 

Control System (IACS), which entails information on 

participation in the Austrian Agri-environmental 

Programme (ÖPUL). In particular, we account for the 

measures ‘greening of arable land’ (i.e. cover crops) 

and ‘direct seeding and seeding on mulch’. Financial 

indicators, other characteristics and topographic 

information of individual farms are derived from the 

Austrian Farm Accountancy Data Network (FADN) 

data. Net revenue is calculated as the difference 

between revenues and costs in Euros per hectare. 

Further, we correct farm profits and subsidies using 

agricultural price indices from 'Statistics Austria'. 

Information on daily temperature and precipitation 

come from the ‘Central Institute for Meteorology and 

Geodynamic’ (ZAMG) at a resolution of 1x1km2. 

 

PRELIMINARY RESULTS  

Based on our assertion that farms employing CC 

adaptation (i.e. soil conservation practices) and those 

who do not differ systematically, we first explore 

observable characteristic of both groups in Table 1. 

Farms with CC adaptation show both, higher net 

revenues and subsidies. Further, it is visible that 

adopting farms cultivate more area with a higher 

share of arable land. These variables might indicate 

that soil conservation practices are primarily 

implemented by larger arable farms. This is reinforced 

when considering topographical and plot-level 

information, which indicate flatter land with higher 

soil quality. Corresponding to existing studies, we also 

find higher temperatures and less precipitation for 

farms with CC adaptation (Teklewold and Mekonnen, 

2017; Auci and Pronti, 2020). 

  

Table 1. Descriptive statistics based on soil conservation. 

 CC adaptation=1 CC adaptation=0 

Farms 547 819 

Net revenues (€/ha) 858.97 (559.89) 727.98 (655.67) 

Subsidies (€/ha) 442.53 (113.86) 405.54 (149.46) 

Farm area (ha) 50.21 (27.03) 33.84 (22.36) 

Arable share (%) 78 (18) 45 (24)     

Livestock (LU/ha) 0.75 (0.67) 0.89 (0.53) 

Tractor (kw/100ha) 182.7 (71.1) 143.4 (61.0) 

Education (1-4)* 3.41 (0.84) 2.96 (1.03) 

Age (year born) 1962.1 (8.8) 1961.5 (10.0)    

Altitude (m) 6.00 (3.87) 9.89 (6.03) 

Slope (°) 357.2 (127.3) 484.1 (160.6) 

Soil quality (0-100)* 52.37 (17.89) 32.21 (15.87) 

Temp20
a (°C) 14.37 (0.88) 13.72 (1.11) 

TempDev
b (°C) 0.51 (0.13) 0.46 (0.16) 

Prec20
a (mm/month) 78.8 (14.6) 86.8 (14.3) 

PrecDev
b (mm/month) 0.7 (4.9) -0.3 (6.1) 

a20: 20-year moving average of weather (i.e. climate); bDev: 

Deviation of annual weather from climate; *: Lowest value 

on the left; Standard deviation in parentheses. 

 

Regarding the econometric analysis, we are currently 

developing a suitable set of variables explaining the 

implementation of CC adaptation. Based on previous 

literature (e.g. Hynes and Garvey, 2009; Auci and 

Pronti, 2020) we mainly focus on farmer, farm and 

topographic variables, resembling some of the 

characteristics in Table 1. Further, preliminary results 

of the CRE Probit model suggest that climatic 

conditions have a significant effect on the adoption of 

soil conservation, reinforcing our expectations and 

previous literature (Teklewold and Mekonnen, 2017). 

 

DISCUSSION AND OUTLOOK 

Based on the comparison of key characteristics 

between adopters and non-adopters, we conclude 

that self-selection bias cannot be excluded and an 

ESRM has to be conducted. Therefore, our next step 

entails final specification of the CRE Probit model to 

uncover drivers and barriers of farm-level CC 

adaptation. Yet, the choice of selection instruments is 

not straightforward. While employing a large panel 

over several years allows us to capture adaptation 

induced by CC, it does not contain intrinsic 

characteristics of farmers (e.g. sustainable farming or 

CC awareness). A potential strategy includes 

employing proxies by accounting for ÖPUL 

participation (i.e. sustainable farming) and climate 

variability (i.e. experience of CC), respectively. First 

simple falsification tests indicate the validity of these 

instruments. In a final step, we aim to isolate the 

direct economic effects of soil conservation, in order 

to assess how CC adaptation affects the 

competitiveness of farms. 
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